# Dipotassium Ditellurium(IV) Pentaoxide Trihydrate, $\mathbf{K}_{2} \mathrm{Te}_{2} \mathbf{O}_{5} . \mathbf{3} \mathbf{H}_{2} \mathbf{O}$ 

By Leif Andersen<br>Department of Inorganic Chemistry, Chalmers Iniversity of Technology and the University of Göteborg, S-41296 Göteborg, Sweden

and Jacques Moret<br>Laboratoire de Chimie Minérale C, Université des Sciences et Techniques du Languedoc, place E. Bataillon, F-34060 Montpellier, France

(Received 19 April 1982; accepted 8 October 1982)


#### Abstract

M_{r}=467 \cdot 4\), monoclinic, $P 2_{1} / c, \quad a=$ 8.007 (6), $\quad b=6.283$ (3), $\quad c=19.007$ (13) $\AA, \quad \beta=$ $102.32(6)^{\circ}, \quad Z=4, \quad V=934.2(9) \AA^{3}, \quad D_{x}=$ 3.323 (3) $\mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Mo} K \alpha)=7.35 \mathrm{~mm}^{-1}, \quad \lambda(\mathrm{Mo}$ $K \alpha)=0.71069 \AA, T=293 \mathrm{~K}$; least-squares refinement based on 1651 diffractometer reflections gave $R=$ 0.031 . The $\mathrm{Te}_{2} \mathrm{O}_{5}$ groups are connected by O bridges to form chains. The $\mathrm{Te}-\mathrm{O}$ distances within the group range from 1.849 (5) to 2.010 (5) $\AA$. The bridging $\mathrm{Te}-\mathrm{O}$ distances are $2 \cdot 294$ (5) and $2 \cdot 264$ (5) $\AA$.


Introduction. The structure of $\mathrm{K}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has been determined in order to investigate whether the structure contains isolated $\mathrm{Te}_{2} \mathrm{O}_{3}^{2-}$ ions or condensed chains and to examine the $\mathrm{Te}^{\mathrm{IV}}$ coordination.

Experimental. A saturated solution of $\mathrm{K}_{2} \mathrm{TeO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in $99 \%$ ethanol was allowed to stand for 24 h at 277 K , whereupon needle-shaped crystals of $\mathrm{K}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were formed. Colourless needles $0.24 \times 0.08 \times$ 0.08 mm , Syntex $P 2_{1}, \quad$ graphite-monochromatized Mo $K \alpha$ radiation, lattice parameters from settings of 15 reflections with $4.4^{\circ}<2 \theta<17.5^{\circ}, 2322$ reflections ( $h k l$ and $h k \bar{l}$ ) with $2 \theta<60 \cdot 0^{\circ}, 1651$ independent with $I<3 \sigma(I)$, intensities from profile analysis of $\omega / 2 \theta$ scans ( cf. Lindqvist \& Ljungström, 1979) according to Lehmann \& Larsen (1974), $2 \theta$-scan intervals $2.0-$ $3.0^{\circ}$, standard reflection $0 \overline{4} 0$ stable; systematic absences: $h 0 l$ for $l$ odd and $0 k 0$ for $k$ odd; Lp correction (Syntex, 1973), semi-empirical absorption correction (Kopfmann \& Huber, 1968; North, Phillips \& Mathews, 1968), relative transmission factor from 0.75 to 1.0, Patterson methods (Syntex, 1973), H not located, anisotropic block-diagonal least-squares refinement (Lindgren, 1977) of positional and thermal parameters minimizing $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, final $R_{w}=0 \cdot 04$, $^{*}$ average

[^0]0108-2701/83/020143-03\$01.50
ratio of shift to error $=0 \cdot 5 \%$, weights $w=1 /\left[\sigma\left(F_{o}\right)^{2}+\right.$ $0.0002\left(F_{o}\right)^{2}$ ] from counting statistics gave acceptable weight analysis; $F(000)=848$; scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Atomic parameters are given in Table 1. The $\mathrm{Te}_{2} \mathrm{O}_{5}$ units in $\mathrm{K}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are connected via fairly strong $\mathrm{Te}_{\mathrm{O}^{\prime}}^{-\mathrm{O}} \mathrm{Te}$ double bridges to form puckered chains running through the structure ( $c f$. Fig. 1). Bond distances within the $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]_{n}^{2 n-}$ chain are shown in Fig. 2 (angles in Table 2), which also includes a comparison with corresponding chain fragments in the similar structures $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Te}_{2} \mathrm{O}_{5} .2 \mathrm{H}_{2} \mathrm{O}$ (Johansson, 1978), $\mathrm{Na}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} .2 \mathrm{H}_{2} \mathrm{O}$ (Daniel, Moret, Maurin \& Philippot, 1981) and $\mathrm{MgTe}_{2} \mathrm{O}_{5}$ (Trömel, 1975). The chain formation results in an O coordination intermediate between three- and fourfold, i.e. between trigonal pyramidal and trigonal bipyramidal with the Te lone pair in an equatorial position. For structures containing $\mathrm{TeO}_{3}^{2-}$ ions it has been found (Philippot, Maurin \& Moret, 1979) that the higher the percentage of water of crystallization present the less distorted is the $\mathrm{TeO}_{3}^{2-}$ ion. Therefore, one may conclude that the arrangement in $\mathrm{K}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is typical for the $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]_{n}^{2 n-}$ chain structure with equatorial $\mathrm{Te}-\mathrm{O}$ bonds of 1.85 $1.89 \AA$, one axial bond of $\sim 2.00 \AA$ in the single $\mathrm{Te}-\mathrm{O}-\mathrm{Te}$ bridge and the other axial bond of $2.25-$ $2.30 \AA$ in the double $\mathrm{Te}_{\mathrm{O}^{\prime}}^{\mathrm{O}^{\prime}} \mathrm{Te}$ bridge.

Other compounds containing the $\mathrm{Te}_{2} \mathrm{O}_{5}$ group as a structural building unit are denningite (Walitzi, 1965) and $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke, Kupčik \& Lindqvist, 1973). These structures do not contain $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]_{n}^{2 n-}$ chains, and are better classified as three-dimensional double oxides $M \mathrm{OTe}_{2} \mathrm{O}_{4}$.

K O distances and probable hydrogen-bond distances are listed in Table 3.


Fig. 1. A stereoscopic view of the $\mathrm{Te}_{2} \mathrm{O}_{5}$ chain (ORTEP, Johnson, 1965).

(a)

(b)

(c)

(d)

Fig. 2. Corresponding fractions of the [ $\left.\mathrm{Te}_{2} \mathrm{O}_{5}\right]_{n}^{2 n-}$ chains in: (a) $\mathrm{K}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} .3 \mathrm{H}_{2} \mathrm{O}$ (this work); (b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Te}_{2} \mathrm{O}_{5} .2 \mathrm{H}_{2} \mathrm{O}$ (Johansson, 1978); (c) $\mathrm{Na}_{2} \mathrm{Te}_{2} \mathrm{O}_{5} .2 \mathrm{H}_{2} \mathrm{O}$ (Daniel, Moret, Maurin \& Philippot, 1981); and (d) $\mathrm{MgTe}_{2} \mathrm{O}_{5}$ (Trömel, 1975). The numbering is in accordance with the original papers.

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ according to Hamilton (1959)
$W$ denotes the O atom of a water molecule.

|  | $x$ | $y$ | $z$ | $B_{\text {eq }}$ |
| :--- | :---: | :--- | :--- | :--- |
| $\mathrm{Te}(1)$ | $0.07122(8)$ | $1.00688(7)$ | $0.92446(3)$ | $0.91(1)$ |
| $\mathrm{Te}(2)$ | $0.31837(8)$ | $0.54526(7)$ | $0.94374(3)$ | $0.90(1)$ |
| $\mathrm{K}(1)$ | $0.4343(3)$ | $0.9584(2)$ | $0.1011(1)$ | $1.23(4)$ |
| $\mathrm{K}(2)$ | $0.8009(3)$ | $0.2420(3)$ | $0.2553(1)$ | $1.50(4)$ |
| $\mathrm{O}(1)$ | $-0.1240(7)$ | $0.8978(8)$ | $0.8656(2)$ | $1.1(1)$ |
| $\mathrm{O}(2)$ | $0.1017(7)$ | $0.8376(8)$ | $1.0083(2)$ | $0.9(1)$ |
| $\mathrm{O}(3)$ | $0.2310(7)$ | $0.8100(8)$ | $0.8887(2)$ | $1.2(1)$ |
| $\mathrm{O}(4)$ | $0.5143(7)$ | $0.7012(7)$ | $0.9883(2)$ | $0.9(1)$ |
| $\mathrm{O}(5)$ | $0.3788(7)$ | $0.4303(8)$ | $0.8629(2)$ | $1.0(1)$ |
| $W(1)$ | $0.1462(19)$ | $0.5386(8)$ | $0.1168(3)$ | $2.3(1)$ |
| $W(2)$ | $0.8514(7)$ | $0.7914(8)$ | $0.2360(3)$ | $1.5(1)$ |
| $W(3)$ | $0.4879(9)$ | $0.4620(8)$ | $0.2469(3)$ | $2.0(1)$ |

Table 2. Angles $\left(^{\circ}\right.$ ) in the $\mathrm{Te}_{2} \mathrm{O}_{5}$ unit

| $\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(3)$ | 87.8 (2) | $\mathrm{O}(4)-\mathrm{Te}(2)-\mathrm{O}(3)$ | 88.2 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}\left(2^{1}\right)-\mathrm{Te}(1)-\mathrm{O}(1)$ | 87.9 (2) | $\mathrm{O}\left(4^{\text {ii }}\right)-\mathrm{Te}(2)-\mathrm{O}(5)$ | 88.8 (2) |
| $\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(1)$ | 104.0 (3) | $\mathrm{O}(4)-\mathrm{Te}(2)-\mathrm{O}(5)$ | 103.6 (3) |
| $\mathrm{O}\left(2^{\mathrm{i}}\right)-\mathrm{Te}(1)-\mathrm{O}(2)$ | 75.8 (2) | $\mathrm{O}\left(4^{\text {iii) }}\right.$ - $\mathrm{Te}(2)-\mathrm{O}(4)$ | 76.4 (1) |
| $\mathrm{O}\left(2^{\mathrm{I}}\right)-\mathrm{Te}(1)-\mathrm{O}(3)$ | 163.5 (3) | $\mathrm{O}\left(4^{\mathrm{ii}}\right)-\mathrm{Te}(2)-\mathrm{O}(3)$ | 164.0 (4) |
| $\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(3)$ | 94.8 (2) | $\mathrm{O}(3)-\mathrm{Te}(2)-\mathrm{O}(5)$ | $90 \cdot 8$ (2) |
| $\begin{aligned} & \mathrm{Te}(1)-\mathrm{O}(3)-\mathrm{Te}(2) \\ & \mathrm{Te}(1)-\mathrm{O}(2)-\mathrm{Te}\left(1^{\mathrm{i}}\right) \end{aligned}$ | $\begin{aligned} & 120 \cdot 8(2) \\ & 104 \cdot 2(2) \end{aligned}$ | $\mathrm{Te}(2)-\mathrm{O}(4)-\mathrm{Te}\left(2^{\text {if }}\right.$ ) | 103.6 (2) |

Symmetry code: (i) $-x, 2-y, 2-z$; (ii) $1-x, 1-y, 2-z$.

Table 3. Probable hydrogen-bond distances and distances $(\AA)$ within the potassium coordination polyhedra

| $W(1)-\mathrm{O}\left(2^{\text {vi }}\right)$ | 2.756 (7) | $W(3)-\mathrm{O}\left(5^{\text {vil }}\right)$ | 2.627 (8) |
| :---: | :---: | :---: | :---: |
| -O(1xi) | 2.756 (7) | $-W\left(2^{\star}\right)$ | 3.002 (9) |
| $W(2)-\mathrm{O}\left(1^{\times 1}\right)$ | 2.704 (7) |  |  |
| -O(5vi) | 2.719 (7) |  |  |
| $-W\left(3^{\text {iv }}\right.$ ) | 3.002 (9) |  |  |
| $\mathrm{K}(1)-\mathrm{O}\left(4^{\text {li }}\right.$ ) | $2 \cdot 816$ (5) | $\mathrm{K}(2)-W\left(\mathrm{l}^{\text {iv }}\right.$ ) | 2.698 (6) |
| $-W\left(3^{\text {iv }}\right.$ ) | 2.823 (6) | $-\mathrm{O}\left(3^{\text {vii }}\right.$ ) | 2.714 (5) |
| -O(1v) | $2 \cdot 840$ (6) | $-W\left(2^{\text {viii }}\right)$ | 2.771 (6) |
| -O(41) | $2 \cdot 865$ (5) | $-W(3)$ | 2.837 (7) |
| -O( $5^{\text {vii }}$ ) | 2.870 (6) | $-W\left(2^{\text {ix }}\right.$ ) | 2.894 (5) |
| -O(2 $2^{\text {vi }}$ ) | 2.963 (6) | $-W\left(3^{x}\right)$ | 2.898 (7) |
| $-\mathrm{O}\left(3^{\text {iii) }}\right.$ ) | 3.019 (6) | -O(1xi) | 3.055 (6) |

Symmetry code: (iii) $1-x, 2-y, 1-z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $-x$, $2-y, 1-z$; (vi) $x, y, z-1$; (vii) $1-x, 1-y, 1-z$; (viii) $2-x,-\frac{1}{2}+y$, $\frac{1}{2}-z ;$ (ix) $x,-1+y, z$; (x) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (xi) $1+x, \frac{3}{2}-y,-\frac{1}{2}+z$; (xii) $-x, 1-y, 1-z$.

The authors wish to thank Professor Oliver Lindquist for valuable discussions.

## References

Daniel, F., Moret, J., Maurin, M. \& Philippot, E. (1981), Acta Cryst. B37, 1278-1281.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hanke, K., Kupčik, V. \& Lindqvist, O. (1973). Acta Cryst. B29, 963-970.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-102. Birmingham: Kynoch Press.
Johansson, G. (1978). Acta Cryst. B34, 2830-2832.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. B33, 2418-2421.
Lindgren, O. (1977). Thesis. Univ. of Göteborg.

Lindqvist, O. \& Luungström, E. (1979). J. Appl. Cryst. 12, 134.
North, A.C.T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Philippot, E., Maurin, M. \& Moret, J. (1979). Acta Cryst. B35, 1337-1340.
Syntex (1973). XTL system. Nicolet XRD, 10061 Bubb Road, Cupertino, California 95014, USA.
Trömel, M. (1975). Z. Anorg. Allg. Chem. 418, 141-144.
$\mathrm{W}_{\text {alitzi, E. M. (1965). Tschermaks Mineral. Petrogr. Mitt. 10, }}$ 241.

Acta Cryst. (1983). C39, 145-148

# Structure of an Oxonium Antimony(III) Sulphate, $\left(\mathbf{H}_{\mathbf{3}} \mathbf{O}\right)_{\mathbf{2}} \mathbf{S b}_{\mathbf{2}}\left(\mathbf{S O}_{\mathbf{4}}\right)_{\mathbf{4}}$ 

By René Mercier and Jacques Douglade<br>Laboratoire d'Electrochimie des Solides, ERA 810, Université de Franche-Comté, 25030 Besançon CEDEX, France<br>and Peter G. Jones and George M. Sheldrick<br>Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

(Received 17 March 1982; accepted 20 October 1982)

Abstract. $M_{r}=665 \cdot 8$, orthorhombic, space group $P b c 2_{1}, a=11.085(2), b=13.760$ (2), $c=8.919$ (3) $\AA$, $Z=4, \quad V=1360.4 \AA^{3}, \quad D_{x}=3.25 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=4.7 \mathrm{~mm}^{-1}, \quad T=293 \mathrm{~K}$. Final $R=0.038$ for 896 independent reflections. The structure is polymeric with sheets in which $-\mathrm{Sb}-\mathrm{O}-\mathrm{S}-$ chains are linked together by $\mathrm{SO}_{4}$ groups; an unusual $\mathrm{SbO}_{5} E$ polyhedron is described with one strong axial $\mathrm{Sb}-\mathrm{O}$ bond $[2.012$ (15) $\AA$ A and four equatorial $\mathrm{Sb}-\mathrm{O}$ bonds [between $2 \cdot 214$ (12) and $2 \cdot 263$ (13) $\AA$ ]. Oxonium cations lie between the layers and interact with them by strong hydrogen bonds (mean $\mathrm{O} \cdots \mathrm{O}$ distance $=2.60 \AA$ ).

Introduction. This structure was examined as part of a systematic study of the influence of the lone pairs $E$ in $\mathrm{SbO}_{n} E$ coordination. We hope to account for the differences between $\mathrm{SbO}_{n} E$ and $\mathrm{AsO}_{n} E$ polyhedra in similar 'sulphate' compounds in terms of ionic radii and the degree of covalency of the $M-\mathrm{O}$ bonds ( $M=\mathrm{As}$, $\mathrm{Sb})$. For arsenic(III) compounds such as $\mathrm{As}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (Douglade \& Mercier, 1982), $\mathrm{As}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{2}$ (Mercier \& Douglade, $1982 b$ ) and $\mathrm{As}_{2} \mathrm{O}_{2}\left(\mathrm{SO}_{4}\right)$ (Mercier \& Douglade, 1982a) only $\mathrm{AsO}_{3} E$ tetrahedra have been observed. On the other hand, in antimony 'sulphates', the coordination number of Sb is greater, and $\mathrm{SbO}_{4} E$ polyhedra are often observed; e.g. $\mathrm{Sb}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{2}$ (Mercier, Douglade \& Theobald, 1975), $\mathrm{Sb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (Mercier, Douglade \& Bernard, 1976), $\mathrm{Sb}_{6} \mathrm{O}_{7}\left(\mathrm{SO}_{4}\right)_{2}$ (Bovin, 1976), and $\mathrm{Sb}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Douglade, Mercier
\& Vivier, 1978). Recently an unusual $\mathrm{SbO}_{5} E$ coordination has been described by us in $\mathrm{Sb}_{4} \mathrm{O}_{2}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{5} \mathrm{O}_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Douglade \& Mercier, 1980). In addition, such compounds may be good ionic proton conductors (Watelet, Picard, Baud, Besse \& Chevalier, 1981), which could be of use in solid-state batteries. We also undertook this structural study to determine the composition and degree of hydration.

Experimental. Single crystals obtained at 293 K from a solution of $\mathrm{Sb}_{2} \mathrm{O}_{3}\left(20 \mathrm{~g} \mathrm{l}^{-1}\right)$ dissolved in $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(\sim 17 M)$. Chemical analysis $\left(\mathrm{Sb}^{3+}\right.$ and $\left.\mathrm{SO}_{4}^{2-}\right)$ of the mother liquor and the wet polycrystalline substrate only enabled us to show that the composition of the pure solid state lies between the 'limiting formulae' $\mathrm{Sb}_{2} \mathrm{O}_{3} .2 \mathrm{SO}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3} .5 \mathrm{SO}_{3} .4 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, since the new phase appears only in a sharp concentration range in strong sulphuric acid $\left(1.40<x<1.52\right.$ for $\left.\mathrm{SO}_{3} . x \mathrm{H}_{2} \mathrm{O}\right)$. On removal from the sulphuric acid solution, the crystals revert rapidly to the anhydrous compound $\mathrm{Sb}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{2}$ and, because of this instability, the specific gravity was not determined.

Wet single crystals sealed in Lindemann tubes employed for X-ray measurement, systematic absences $(0 k l \rightarrow k=2 n+1 ; h 0 l \rightarrow l=2 n+1)$ in the orthorhombic system indicated space group $P b c m$ or $P b c 2_{1}$, crystal approximately $0.2 \times 0.2 \times 0.25 \mathrm{~mm}$ used for data collection, automated Nonius CAD-4 four-circle diffractometer of the Lyon-1 University, graphite monochromator, Mo $K \alpha$ radiation, cell dimensions © 1983 International Union of Crystallography


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38204 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

